## **Working principle**

The vortex flowmeter operates on the basis of Karman vortex street principle. When the media flows through the vortex generator, the vortex is formed at its two sides in rotation thus forming the vortex street (Karman vortex street). The generating frequency f of vortex street is directly proportional to the flow speed v and is inversely proportional to the width d of vortex generator:

 $f=St \times v / d$ Instrument parameters: a ratio of separation pulse amount of vortex to the volume amount: K=N / V In the formula: K-instrument coefficient (pulse 1/m3) N-pulse number (time) V-volume amount The relationship between the vortex separation frequency and liquid flow is as follows: f=K × Q

In the formula: f-frequency (time)

Q-flow (m3/h)

By testing the vortex separation frequency, the liquid flow in the pipe can be measured.

#### Product type and mark

| Table 1 Product type and mark |       |     |         |           |        |                                                                             |                                 |                                                                    |  |  |
|-------------------------------|-------|-----|---------|-----------|--------|-----------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|--|--|
|                               |       |     | Product | t type an | d mark |                                                                             |                                 | Instruction                                                        |  |  |
| Order 1.2.3                   | 4     | 5   | 6       | 7         | 8      | 9                                                                           | 10                              | Karman vortex street                                               |  |  |
| Kind LUG                      |       |     |         |           |        |                                                                             |                                 |                                                                    |  |  |
| Test method                   | В     |     |         |           |        |                                                                             |                                 | Stress type test                                                   |  |  |
| Flange clamp                  |       | 2   |         |           |        |                                                                             |                                 | The product exits the factory with the clamp flange and bolts      |  |  |
|                               |       |     | 1       |           |        |                                                                             |                                 | For both gas and liquid                                            |  |  |
| Media tested 2                |       |     |         |           |        | Liquid                                                                      |                                 |                                                                    |  |  |
|                               | 3     |     | 3       |           |        |                                                                             |                                 | Gas                                                                |  |  |
|                               |       |     | 4       |           |        |                                                                             |                                 | Steam                                                              |  |  |
| 02 25mm                       |       |     | 25mm    |           |        |                                                                             |                                 |                                                                    |  |  |
|                               |       |     |         | 04        |        |                                                                             |                                 | 40mm                                                               |  |  |
|                               |       |     |         | 05        |        |                                                                             |                                 | 50mm                                                               |  |  |
|                               |       |     |         | 08        |        |                                                                             |                                 | 80mm                                                               |  |  |
|                               | Calib | ber |         | 10        |        |                                                                             |                                 | 100mm                                                              |  |  |
|                               |       |     |         | 15        |        |                                                                             |                                 | 150mm                                                              |  |  |
|                               |       |     |         | 20        |        |                                                                             |                                 | 200mm                                                              |  |  |
|                               |       |     |         | 25        |        |                                                                             |                                 | 250mm                                                              |  |  |
|                               |       |     |         | 30        |        |                                                                             |                                 | 300mm                                                              |  |  |
|                               |       |     |         |           | Z      |                                                                             |                                 | Combination type                                                   |  |  |
|                               |       |     |         |           | Р      |                                                                             | Voltage pulse(24V power supply) |                                                                    |  |  |
|                               |       |     |         |           |        | s                                                                           |                                 | $(4 \sim 20)$ mA output and on site LCD display (24V power supply) |  |  |
|                               |       |     |         | D         |        | On site LCD display, without any output (3.6V lithium battery power supply) |                                 |                                                                    |  |  |
|                               |       |     |         |           |        |                                                                             | В                               | Intrinsic explosion proofiaIICT6                                   |  |  |

## **Technical parameters**

| Table 2 Main technical performance of the sensor |                                 |                          |                         |  |  |  |  |
|--------------------------------------------------|---------------------------------|--------------------------|-------------------------|--|--|--|--|
| Nominal diameter                                 | 25/40/50/80/100/150/200/250/300 | Output signal            | Pulse、(4 ~ 20)mA        |  |  |  |  |
| Material                                         | 1Cr18Ni9Ti                      | Ambient conditions       | (-10 ~ +55)℃            |  |  |  |  |
| Nominal pressure                                 | Lower than 2.5MPa               | Power                    | +24V                    |  |  |  |  |
| Media temperature                                | (-40 ~ +250) (−40 ~ +350)°C     | Signal transmission wire | RVVP3 × 0.5、RVVP2 × 0.5 |  |  |  |  |
| Accuracy class                                   | 0.5、1.0、1.5                     | Transmission distance    | 1000 m                  |  |  |  |  |
| Scope                                            | 1: 10                           | Type of safety barrier   | JHA – H2 JHA – B        |  |  |  |  |
| Resistance loss coefficient                      | Cd lower than2.4                |                          |                         |  |  |  |  |

## **Product purpose**

This instrument can be used widely in the flow measurement of various medium such as drainage, industrial circulation, sewage disposal, oil type and chemical agent, compressed air, saturated steam, over-hot steam and natural gas in the "big, medium or small pipe."

# Flow scope(liquid)

| Table 3 |                                |         |                                |  |  |  |  |
|---------|--------------------------------|---------|--------------------------------|--|--|--|--|
| Caliber | Flow scope (m <sup>3</sup> /h) | Caliber | Flow scope (m <sup>3</sup> /h) |  |  |  |  |
| 25      | 1.6 ~ 13                       | 150     | 45 ~ 450                       |  |  |  |  |
| 40      | 3 ~ 30                         | 200     | 80 ~ 800                       |  |  |  |  |
| 50      | 5 ~ 40                         | 250     | 125 ~ 1200                     |  |  |  |  |
| 80      | 13 ~ 130                       | 300     | 180 ~ 1800                     |  |  |  |  |
| 100     | 20 ~ 200                       |         |                                |  |  |  |  |

The maximum flow speed of liquid should be lower than 7m/s, the standard liquid means the liquid at the temperature of t=20°C; P = 0.1013MPa; ρ =998kg/m<sup>3</sup>.

# Flow scope(gas)

|         | Table 4                        |         |                                |  |  |  |  |  |
|---------|--------------------------------|---------|--------------------------------|--|--|--|--|--|
| Caliber | Flow scope (m <sup>3</sup> /h) | Caliber | Flow scope (m <sup>3</sup> /h) |  |  |  |  |  |
| 25      | 9 ~ 60                         | 150     | 200 ~ 2000                     |  |  |  |  |  |
| 40      | 20 ~ 160                       | 200     | 400 ~ 4000                     |  |  |  |  |  |
| 50      | 45 ~ 300                       | 250     | 750 ~ 8000                     |  |  |  |  |  |
| 80      | 80 ~ 600                       | 300     | 1000 ~ 10000                   |  |  |  |  |  |
| 100     | 120 ~ 1000                     |         |                                |  |  |  |  |  |

The gas means the air under normal temperature and pressure, t=20°C; P=0.1013MPa;  $\rho$  = 1.205 kg/m<sup>3</sup>.

## Flow range(Saturated steam) kg/h

|                             | Table 5-1      |              |              |              |              |              |              |  |  |  |
|-----------------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|--|
|                             | Pressure (MPa) |              |              |              |              |              |              |  |  |  |
| Bore (mm)                   | 0.1            | 0.15         | 0.2          | 0.3          | 0.4          | 0.5          | 0.6          |  |  |  |
| DN25                        | 9~89           | 13 ~ 129     | 17 ~ 170     | 25 ~ 248     | 29 ~ 324     | 32~401       | 35 ~ 476     |  |  |  |
| DN40                        | 18 ~ 230       | 26 ~ 335     | 34 ~ 441     | 50 ~ 644     | 58~842       | 64 ~ 1041    | 70 ~ 1236    |  |  |  |
| DN50                        | 24 ~ 295       | 34 ~ 430     | 45 ~ 565     | 66 ~ 825     | 77 ~ 1080    | 86 ~ 1335    | 94 ~ 1585    |  |  |  |
| DN80                        | 59 ~ 708       | 86~1032      | 113 ~ 1356   | 165 ~ 1980   | 193 ~ 2592   | 215 ~ 3204   | 234 ~ 3804   |  |  |  |
| DN100                       | 89 ~ 1121      | 129 ~ 1634   | 170 ~ 2147   | 248 ~ 3135   | 290~4104     | 322 ~ 5073   | 361 ~ 6023   |  |  |  |
| DN150                       | 177 ~ 2655     | 258 ~ 3870   | 339 ~ 5085   | 495 ~ 7425   | 580 ~ 9720   | 644 ~ 12015  | 722 ~ 14265  |  |  |  |
| DN200                       | 254 ~ 4720     | 370 ~ 6880   | 486 ~ 9040   | 710 ~ 13200  | 863 ~ 17280  | 1067 ~ 21360 | 1267 ~ 25360 |  |  |  |
| DN250                       | 478 ~ 8260     | 697 ~ 12040  | 915 ~ 15820  | 1337 ~ 23100 | 1565 ~ 30240 | 1740 ~ 37380 | 1949 ~ 44380 |  |  |  |
| DN300                       | 832 ~ 11800    | 1213 ~ 17200 | 1593 ~ 22600 | 2327 ~ 33000 | 2724 ~ 43200 | 3092 ~ 53400 | 3300 ~ 63400 |  |  |  |
| Density(kg/m <sup>3</sup> ) | 0.59           | 0.86         | 1.13         | 1.65         | 2.16         | 2.67         | 3.17         |  |  |  |
| Temperature(℃)              | 99.6           | 111.4        | 120          | 133          | 144          | 152          | 159          |  |  |  |

|                             |                |              | Table 5-2    |               |               |               |  |  |  |
|-----------------------------|----------------|--------------|--------------|---------------|---------------|---------------|--|--|--|
|                             | Pressure (MPa) |              |              |               |               |               |  |  |  |
| Bore (mm)                   | 0.7            | 0.8          | 0.9          | 1.0           | 1.2           | 1.5           |  |  |  |
| DN25                        | 38 ~ 551       | 40 ~ 624     | 43 ~ 699     | 45 ~ 773      | 49~920        | 54 ~ 1140     |  |  |  |
| DN40                        | 76 ~ 1431      | 80 ~ 1622    | 85 ~ 1817    | 89 ~ 2009     | 99~2391       | 122 ~ 2964    |  |  |  |
| DN50                        | 101 ~ 1835     | 107 ~ 2080   | 114 ~ 2330   | 119 ~ 2575    | 130 ~ 3065    | 145 ~ 3800    |  |  |  |
| DN80                        | 252 ~ 4404     | 268 ~ 4992   | 284 ~ 5592   | 298 ~ 6180    | 329 ~ 7365    | 408 ~ 9120    |  |  |  |
| DN100                       | 418 ~ 6973     | 474 ~ 7904   | 531 ~ 8854   | 586 ~ 9785    | 698 ~ 11647   | 865 ~ 14440   |  |  |  |
| DN150                       | 836 ~ 16515    | 947 ~ 18720  | 1061 ~ 20970 | 1173 ~ 23175  | 1396 ~ 27585  | 1730 ~ 34200  |  |  |  |
| DN200                       | 1467 ~ 29360   | 1663 ~ 33280 | 1863 ~ 37280 | 2058 ~ 41200  | 2450 ~ 49040  | 3038 ~ 60800  |  |  |  |
| DN250                       | 2256 ~ 51380   | 2557 ~ 58240 | 2865 ~ 65240 | 3166 ~ 72100  | 3768 ~ 85820  | 4672 ~ 106400 |  |  |  |
| DN300                       | 3551 ~ 73400   | 3780 ~ 83200 | 4001 ~ 93200 | 4269 ~ 103000 | 5081 ~ 122600 | 6300 ~ 152000 |  |  |  |
| Density(kg/m <sup>3</sup> ) | 3.67           | 4.16         | 4.66         | 5.15          | 6.13          | 7.60          |  |  |  |
| emperature(℃)               | 165            | 170          | 175          | 180           | 188           | 234           |  |  |  |

| Table 5-3                   |                             |                             |                              |                             |                |  |  |  |  |
|-----------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|----------------|--|--|--|--|
|                             | Pressure (MPa)              |                             |                              |                             |                |  |  |  |  |
| Bore (mm)                   | 2.5                         | 3.0                         | 3.5                          | 4.0                         | 4.5            |  |  |  |  |
| DN25                        | 78 ~ 1875                   | 94 ~ 2250                   | 109 ~ 2625                   | 125 ~ 3000                  | 141 ~ 3401     |  |  |  |  |
| DN40                        | 201 ~ 4875                  | 241 ~ 5850                  | 282 ~ 6825                   | 322 ~ 7800                  | 365 ~ 8841     |  |  |  |  |
| DN50                        | 208 ~ 6250                  | 249 ~ 7500                  | 291 ~ 8750                   | 333 ~ 10000                 | 377 ~ 11335    |  |  |  |  |
| DN80                        | 671 ~ 15000                 | 805 ~ 18000                 | 939 ~ 21000                  | 1073 ~ 24000                | 1217 ~ 27204   |  |  |  |  |
| DN100                       | 1423 ~ 23750                | 1708 ~ 28500                | 1992 ~ 33250                 | 2277 ~ 38000                | 2581 ~ 43073   |  |  |  |  |
| DN150                       | 2846 ~ 56250                | 3415 ~ 67500                | 3984 ~ 78750                 | 4554 ~ 90000                | 5162 ~ 102015  |  |  |  |  |
| DN200                       | 4996 ~ 100000               | 5995 ~ 120000               | 6995 ~ 140000                | 7994 ~ 160000               | 9061 ~ 181360  |  |  |  |  |
| DN250                       | 7684 ~ 175000               | 9221 ~ 210000               | 10758 ~ 245000               | $12295 \sim 28 \times 10^3$ | 13936 ~ 317380 |  |  |  |  |
| DN300                       | $10361 \sim 25 \times 10^4$ | 12434 ~ 3 × 10 <sup>5</sup> | 14506 ~ 35 × 10 <sup>4</sup> | 16578 ~ 4 × 10⁵             | 18791 ~ 453400 |  |  |  |  |
| Density(kg/m <sup>3</sup> ) | 12.50                       | 15.00                       | 17.5                         | 20.00                       | 22.67          |  |  |  |  |
| Temperature(℃)              | 224                         | 234                         | 242                          | 250                         | 258            |  |  |  |  |

## Flow range(over-hot steam t/h)

|         | Table 6                             |                      |         |                                     |                 |  |  |  |
|---------|-------------------------------------|----------------------|---------|-------------------------------------|-----------------|--|--|--|
| Caliber | Minimum flow                        | Maximum flow         | Caliber | Minimum flow                        | Maximum flow    |  |  |  |
| 25      | 14.063 ρ <sup>1/2</sup> kg/h        | 70.681 ρ kg/h        | 150     | <b>506.31</b> ρ <sup>1/2</sup> kg/h | <b>2.5445</b> ρ |  |  |  |
| 40      | <b>36.005</b> ρ <sup>1/2</sup> kg/h | 180.94 ρ kg/h        | 200     | 0.90012 ρ <sup>1/2</sup> kg/h       | <b>4.5236</b> ρ |  |  |  |
| 50      | 56.257 ρ <sup>1/2</sup> kg/h        | <b>282.73</b> ρ kg/h | 250     | 1.4064 ρ <sup>1/2</sup> kg/h        | <b>7.0681</b> ρ |  |  |  |
| 80      | 144.02 ρ <sup>1/2</sup> kg/h        | 723.77 ρ kg/h        | 300     | <b>2.0253</b> ρ <sup>1/2</sup> kg/h | <b>10.178</b> ρ |  |  |  |
| 100     | 225.03 ρ <sup>1/2</sup> kg/h        | <b>1.1309</b> ρ      |         |                                     |                 |  |  |  |

The density of over-hot steam under working condition P, kg/m<sup>3</sup>

# The installation of vortex street flow sensor

#### Choose the installation point correctly

It is very important to select an installation point and properly install the sensor. In case of any improper installation, it can either influence measurement accuracy or the service lifetime, or even damage the sensor. (For easy installation and detachment, an expansion joint can be added behind the flow meter.) ♦ Requirement for straight tube

There is requirement for straight tubes on the upper and lower stream of sensor's installation point, or the measurement accuracy will be influenced. If there is a gradual shrinkage tube at the upper stream of sensor's installation point, there should be a straight tube no less than 15D at the upper stream and a straight tube no less than 5D at the lower stream of sensor. If there is a gradual expansion tube at the upper stream of sensor's installation point, there should be a straight tube no less than 18D at the upper stream and a straight tube no less than 5D at the lower stream of sensor. If there is a 90° bend or T joint at sensor's installation point, there should be a straight tube no less than 20D at the upper stream and a straight tube no less than 5D at the lower stream of sensor.

TEL: 0519-85302114 85319866 HTTP: //www.qf-meter.com

If there are two 90° bends of the same plane at upper stream of sensor's installation point, there should be a straight tube no less than 25D at the upper stream and a straight tube no less than 5D at the lower stream of sensor.

If there are two 90° bends of different plane at upper stream of sensor's installation point, there should be a straight tube no less than 40D at the upper stream and a straight tube no less than 5D at the lower stream of sensor. Try to install the flow regulate valve or pressure regulate valve at 5M away from the sensor's lower stream.

If it is necessary to locate it at the upper stream, there should be a straight tube no less than 50D at the upper stream and a straight pipe no less than 5D at the lower stream of sensor.

#### Special cautions

If the valve is close to the upper stream of sensor's installation point, constantly turning on\off the valve will greatly influence lifetime and easy to bring permanent damage to sensor.

Avoid to install valve at the long pipes built on the stilts , otherwise , the lower part to sensor can easily cause sealing leakage between sensor and flange. If it is impossible to avoid, it is required to prepare fixing devices at the 2D of sensor's lower stream

### ◆ Requirement for pipes

There are some requirements for straight tubes at both upper and lower stream of sensor's installation point. Or the measurement accuracy will be influenced.

Pipes at both upper and lower stream of sensor's installation point have the same inner diameter as that of sensor, which should meet the following requirement:

#### 0.98DN ≤ D ≤ 1.05D

In the formula:DN-inner diameter of sensor; D-inner diameter of pipes.

Pipes should be concentric with sensor and the axial should not be over 0.05DN ;

The sealing gasket between sensor and flange cannot be protruding inside pipes , its inner diameter can be slightly bigger than that of sensor.

### Requirement for bypass

It is better to prepare bypass for maintenance and repair. Besides, if it is impossible to stop supplying fluid for purpose of maintenance and repair at the tubes to be cleaned or at sensor 's inner pipes, it is necessary to install bypass and ensure straight tubes at both front and back ends.



### ◆ Requirement for pipe vibration

Avoid to install sensor at tubes with strong vibration; In case of impossible avoidance, it is required to have vibration reduction measures, such as : preparing fixing devices at 2D of sensor's upper and lower stream and adding antivibration gasket. Special attention: Avoid to install sensor at the outlet of air compressor and try to put after the storage tank.

◆ Requirement for outer environment

1) Avoid to install at places which have great temperature changes or under heat radiation, in case of such conditions, it is required to have ventilation and heat insulation measure.

2) Avoid to install at places which have corrosive gases, in case of such conditions, it is required to have ventilation measure.3) It is better to install inside room, in case of outdoor, it is required to have anti-damp and anti-basking measure and prevent water from flowing along cables into the amplifier box.

4) There should be enough space around the sensor, with lighting and power socket for wiring and constant maintenance.5) The wiring box of sensor should be away from electric noise, such as: large power transformer, motor and power etc.6) There should be no wireless receiver and sender near the sensor, or high frequency noise will interfere with normal operation of sensor.

#### ♦ To install correctly

While measuring gas flow, if there is a little liquid contained in the gas measured, sensor should be placed at a higher point of pipes.

While measuring liquid flow, if there is a little gas contained in the liquid measured, sensor should be placed at a lower point of pipes.

#### $\diamondsuit$ Install sensor at the vertical pipes

While measuring gas flow, sensor can be placed at vertical pipes without any limitation of flow direction.if there is a little liquid contained in the gas measured, the gas flow direction should be from up to down. While measuring liquid flow, liquid flow direction should be from downward to upward in order to avoid additional liquid weight on probes.

#### $\diamondsuit$ Install sensor at the side of horizontal pipes

No matter what kind of fluid is measured, sensor can be installed at the side of horizontal pipes, especially while measuring the over-heated steam, saturated steam and low-temperature liquid, it is better to take horizontal installation if possible in order to minimize temperature's influence on amplifier.

#### $\diamondsuit$ Install downwards at the horizontal pipes

Usually it is not recommended, such method isn't applicable for measuring gas and over-heated steam,but it is good for measuring saturated steam and high temperature liquid,or tubes requiring frequent cleaning.

#### $\diamondsuit$ Install sensor at the heat-protection pipes

While measuring high temperature steam, use heat insulation materials to wrap the surrounding pipes for heat protection. Under such circumstances, avoid wrapping sensor's connection rod at max. 1/3 of its height with heat insulation material, however, sensor's housing can be wrapped.



TEL: 0519-85302114 85319866 HTTP: //www.qf-meter.com

| Connecti | ion rod                  |  |
|----------|--------------------------|--|
|          | Heat insulation material |  |
|          |                          |  |

Fig.2

♦ Installation procedures of sensor and pipes

The instrument uses flange connection (butt or holding type), tighten screws and clamp sensor with 2 flanges, flange's protruding part clamps sensor and concave part shares the tubes , see the following procedures:

a) Calculate the installation dimension.

b) Saw off the pipes to be installed and repair the cut.

c) Cover flange on the pipes, fix and spot weld, then weld the whole ring, check if it is well welded.

d) Repeat the am. steps and weld another side of flange.

e) Take the welded pipes to the installation site and combine it with sensor, then install on the pipes.

f) Check if every procedure is well done; slowly open the valve , check if there is any leakage.

♦ Special attention:

a) Flow direction should be the same as the flow indication of sensor.

b) During installation, while welding flange or pipes, sensor should not be on the pipes to avoid damage to the electric amplifier circuit.

c) Flanges at both side of sensor should be in parallel to avoid any possible leakage.

♦ On site wiring of output frequency signal

3-phase transmission is adopted between flowmeter which outputs frequency signal and other equipments, the necessary power is 24(1 ± 10%) V, the minimum load resistance of output circuit is 10K $\Omega$ , maximum capacitor is 0.22uF and the shielding resistance must be less than  $50\Omega$ .

Usually, 3-phase wiring is adopted (RVVP3X 0.5mm ). The shielding layer can be connected to the ground nut of amplifier box; under high and low temperature, it is necessary to use shielding wiring appropriate for the local temperature.

If there is oil, solvent or other corrosive gas and liquid in the on site air, it is necessary to use shielding wiring appropriate for the local conditions.

Wiring cannot be in parallel with the power line, it needs at least 15cm space, better to be inside the metal tubes . Fix the wiring and prevent any shaking.

Select correctly temperature and pressure measuring point

While measuring pressure and temperature near sensor, the pressure measuring point should be 3D-5D of the lower stream of the sensor, and temperature measuring point should be behind the pressure measuring point.









### ◆ The installing dimensions

|      | Table 7 |                   |     |                  |     |    |         |  |  |
|------|---------|-------------------|-----|------------------|-----|----|---------|--|--|
| Bore | In      | strument dimensic | n   | Flange dimension |     |    |         |  |  |
| DN   | С       | L                 | Н   | А                | В   | D  | Е       |  |  |
| 25   | 70      | 102               | 360 | 145              | 118 | 16 | 4- Ø16  |  |  |
| 40   | 82      | 114               | 340 | 140              | 110 | 16 | 4- Ø18  |  |  |
| 50   | 82      | 122               | 350 | 160              | 130 | 20 | 4- Ø18  |  |  |
| 65   | 92      | 146               | 380 | 185              | 145 | 22 | 4- Ø18  |  |  |
| 80   | 110     | 150               | 385 | 198              | 160 | 20 | 6- Ø18  |  |  |
| 100  | 120     | 164               | 410 | 232              | 190 | 22 | 6- Ø18  |  |  |
| 150  | 142     | 190               | 460 | 280              | 240 | 24 | 8- Ø24  |  |  |
| 200  | 170     | 222               | 520 | 340              | 295 | 26 | 12- Ø24 |  |  |
| 250  | 170     | 226               | 585 | 405              | 355 | 28 | 12- Ø28 |  |  |
| 300  | 170     | 234               | 640 | 460              | 410 | 32 | 12- Ø28 |  |  |

## P55-56



#### Fig.4